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ABSTRACT
Intel recently introduced the Xeon Phi coprocessor based on the 
Many Integrated Core architecture featuring 60 cores with a peak 
performance of 1.0 Tflop/s. NASA has deployed a 128-node SGI 
Rackable system where each node has two Intel Xeon E2670 8-
core Sandy Bridge processors along with two Xeon Phi 5110P 
coprocessors. We have conducted an early performance 
evaluation of the Xeon Phi. We used microbenchmarks to 
measure the latency and bandwidth of memory and interconnect, 
I/O rates, and the performance of OpenMP directives and MPI 
functions. We also used OpenMP and MPI versions of the NAS 
Parallel Benchmarks along with two production CFD applications 
to test four programming modes: offload, processor native, 
coprocessor native and symmetric (processor plus coprocessor). In 
this paper we present preliminary results based on our perfor-
mance evaluation of various aspects of a Phi-based system.  

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces – benchmarking, evaluation/methodology 

General Terms
Measurement, Performance, and Experimentation 

Keywords
Intel Xeon Phi, Intel MIC architecture, Intel Sandy Bridge processor, 
performance evaluation, benchmarking, CFD applications 

1. INTRODUCTION
The stagnation of processor frequency due to the constraints of 
power and current leakage has led hardware vendors to increase 
parallelism in their processor designs in order to enhance the 
performance of highly parallel scientific and engineering 
applications. This has led to an era of heterogeneous computing 
where highly parallel accelerators are paired with modestly 
parallel x86-compatible processors. The two current approaches 
use either the NVIDIA’s General-Purpose Graphical Processing 
Unit (GPGPU) or the Intel Xeon Phi.  

The GPGPU approach relies on streaming multiprocessors and 
uses a low-level programming model such as CUDA or a high-
level programming model like OpenACC to attain high 
performance [1-3]. Intel’s approach has a Phi serving as a 
coprocessor to a traditional Intel processor host. The Phi has x86-
compatible cores with wide vector processing units and uses 
standard parallel programming models such as MPI, OpenMP, 
hybrid (MPI + OpenMP), UPC, etc. [4-5].  

Understanding performance of these heterogeneous computing 
systems has become very important as they have begun to appear 
in extreme-scale scientific and engineering computing platforms, 
such as Blue Waters at NCSA, Stampede at TACC, and Titan at 
Oak Ridge National Laboratory (ORNL) [6-8]. Large-scale 
GPGPU-based supercomputers have been around for the last ten 
years and a significant amount of research work—including 
applications, algorithms and performance evaluation—has been 
done, resulting in a vast amount of research literature on the 
subject. However, the relative newness of the Many Integrated 
Core (MIC)—it has its genesis with the Larabee project in 2006—
means that there is a dearth of scientific literature on using it to 
achieve high performance in scientific and engineering 
applications [8-15]. 

In this paper we study the performance of “Maia,” a 128-node 
InfiniBand-connected cluster, where each node has two Intel 
Xeon E5-2670 (Sandy Bridge) processors and two Xeon Phi 
5110P coprocessors. In the rest of the paper we refer to the two 
Sandy Bridge processors collectively as the “host” and the Xeon 
Phi coprocessors as the “Phi”, using “Phi0” and “Phi1” when we 
need to distinguish between the two coprocessors. Several papers 
have reported on the experience of porting applications to the non-
commercial version of the MIC (32-core Knights Ferry chips) in 
MIC workshops at TACC and ORNL [11-12]. However, none of 
the reports at these two workshops gave any performance 
numbers or carried out a detailed performance evaluation of the 
Intel Xeon Phi product. To the best of our knowledge the 
following is our original contribution: 

a. We measured the latency and memory bandwidth of L1, L2,
caches, and main memory of Phi. In addition, we also measured
the Peripheral Component Interconnect Express (PCIe) latency
and bandwidth achieved by the MPI and offload modes
between host and Phi on the same node.

b. We measured and compared the performance of intra-node MPI
functions (point-to-point, one-to-many, many-to one, and all-to-
all) for both host and Phi.
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c. We measured and compared the overhead of OpenMP 
constructs for synchronization, loop scheduling, and data 
movement on host and Phi. 

d. We measured and compared the I/O performance for both the 
host and Phi. 

e. We measured and compared the performance of MPI and 
OpenMP based NAS Parallel Benchmarks (NPBs) 3.3 on both 
the host and Phi.  

f. We measured and compared the performance of two 
production-level applications using different modes: native 
host, native Phi and symmetric (host+Phi0+Phi1) modes. 

The remainder of the paper is organized as follows. Section 2 
provides details of the Maia computing system. In Section 3 we 
briefly describe the benchmarks and applications used in the 
current study. Section 4 describes the four programming models 
available on Phi-based heterogeneous computing systems. Section 
5 gives the description of pre-update and post-update software 
environments. In Section 6 we discuss the performance results 
obtained in our evaluation of the Sandy Bridge processors based 
host and the Phi coprocessors. In Section 7 we present our 
conclusions.  

2. COMPUTING PLATFORM “MAIA” 
The NASA Advanced Supercomputing (NAS) Division at NASA 
Ames recently installed a 128-node heterogeneous SGI Rackable 
computing system called “Maia.” Each node has two Intel Xeon 
E5-2670 (Sandy Bridge) processors and two Intel Xeon Phi 
coprocessors. The Sandy Bridge is an 8-core processor using a 32-
nm process technology. Each Phi is a 60-core Symmetric Multi 
Processor (SMP) on a chip and uses 22-nm process technology. 
Overall, the system has a theoretical peak performance of 301.4 
Tflop/s. Of that peak performance, 42.6 Tflop/s comes from the 
2,048 Sandy Bridge cores and 258.8 Tflop/s comes from the 
15,360 Phi cores. The system has 4 TB of memory available to the 
Sandy Bridge processors and 2 TB for the Phi coprocessors for a 
total memory of 6 TB. 

Maia's heterogeneous architecture is depicted in Figure 1. Each of 
the 128 nodes has three distinct memory systems. The main host 
memory is 32 GB and is shared in a cache coherent fashion by the 
16 cores of the two Sandy Bridge processors. The cores in each of 
the Phi coprocessors share an 8-GB cache-coherent memory 
system. Each Phi is connected to other devices on the node via a 
separate 16-lane PCI Express (PCIe) bus [4-5]. Connectivity to 
other nodes is provided by a fourteen data rate (FDR) InfiniBand 
Host Channel Adapter (HCA) plugged into the first PCIe bus [31]. 

The Phi coprocessors run a BusyBox-based micro Linux operating 
system. A virtualized TCP/IP stack is implemented over PCIe, 
permitting access to the coprocessors as network nodes. This 
facilitates connecting to each coprocessor through a secure shell 
(ssh) and running jobs. The two Phis within a node can 
communicate with each other via the PCIe peer-to-peer 
interconnect with intervention from the host processor.  

 

 
Figure 1.  Maia’s heterogeneous architecture. 

As shown in Figure 2, the Sandy Bridge based node has two Xeon 
E5-2670 processors. Each processor has eight cores, clocked at 
2.6 GHz, with a peak performance of 166.4 Gflop/s [15]. Each 
core has 64 KB of L1 cache (32 KB data and 32 KB instruction) 
and 256 KB of L2 cache. All eight cores share 20 MB of last level 
cache, also called L3 cache. The on-chip memory controller 
supports four DDR3 channels running at 1600 MHz, with a peak-
memory bandwidth per processor of 51.2 GB/s. Each processor 
has two QPI links to connect with the second processor of a node 
to form a non-uniform-memory access (NUMA) architecture. 
Each QPI link runs at 8 GT/s (“T” for transactions), at which rate 
2 bytes can be transferred in each direction, for an aggregate rate 
of 32 GB/s.  

 
Figure 2.  Schematic diagram of the Intel Xeon E5-2670 

“Sandy Bridge” processor. 



2.1 Coprocessor: Intel Xeon Phi 
Figure 3 shows the schematic diagram of a Phi coprocessor. Each 
Phi coprocessor has 60 modified P54C-design in-order execution 
cores running at 1.05 GHz and connected by a bi-directional ring 
interconnect. The core architecture is based on the x86 Instruction 
Set Architecture extended with 64-bit addressing and new 512-bit 
wide SIMD vector instructions and registers. Each core can 
execute two instructions per clock cycle. Also, a core has 32-KB, 
8-way set-associative L1(I) and L1(D) caches and a 512-KB 
unified L2 cache. The L2 caches are connected to the Core Ring 
Interface, which is used to make memory requests. The L2 caches 
are kept coherent by a globally distributed tag directory (TD) 
hanging off the ring. Each Phi core has a dedicated 512-bit wide 
vector floating-point unit unlike a Sandy Bridge core, which has a 
256-bit wide floating-point unit. However, Phis do not support 
MMX, SSE or AVX instructions.  

Each Phi coprocessor has 8 memory controllers, which support 
Graphics Double Data Rate, version 5 (GDDR5) channels. Each 
controller can operate two 32-bit channels for a total of 16 
memory channels that are capable of delivering 5 GT/s per 
channel. These memory controllers are interleaved around the ring 
symmetrically. Tag directories have an all-to-all mapping to the 
eight memory controllers.  

Each Phi core supports four hardware threads for a total of 240 
hardware threads in one Phi coprocessor. Multithreading on MIC 
is entirely different from the HyperThreading (HT) on the Sandy 
Bridge architecture. In Sandy Bridge, the aim of HT is to exploit 
the processor resources more efficiently, whereas in MIC it is to 
hide latencies inherent in an in-order microarchitecture [16-17]. 
HT can be turned on or off on a Sandy Bridge processor but 
multithreading cannot be turned off on a Phi. In addition, compute 
intensive applications don’t benefit (and rather may be hurt) using 
HT on Sandy Bridge, whereas applications benefit by using 
multithreading on the Phi. There are four thread contexts per 
physical core. Registers are replicated, but L1 and L2 caches are 
shared among the threads in a core. When one thread stalls, the 
processor makes a context switch to another one. However, it 
cannot issue back-to-back instructions in the same thread.  

The MIC architecture has a provision for high performance 
reciprocal, square root, power, and exponent operations, as well as 
scatter/gather and streaming store capabilities for high memory 
bandwidth.  

Table 1 gives the detailed hardware and software characteristics 
of the Maia system. 

 
Figure 3.  Schematic diagram of a Phi coprocessor. 

TABLE 1.  CHARACTERISTICS OF MAIA, SGI RACKABLE 
C1104G-RP5 SYSTEM. 

 Host Processor  Coprocessor 
Processor 
Processor architecture Sandy Bridge Many Integrated Core 
Processor type  Intel Xeon E5-2670 Intel Xeon Phi 5110P 
Number cores/processor 8 60 
Base frequency (GHz) 2.60 1.05  
Turbo frequency (GHz) 3.20 NA 
Floating points / clock 8 16 
Perf. /core (Gflop/s) 20.8 16.8 
Proc. perf. (Gflop/s) 166.4 1008 
New instruction  SSE4.1, 4.2 and AVX MIC VEC Instruction 
SIMD vector width  256  512 
Number of threads / core 2 4 
Multithreading on/off On or Off Always ON 
Type of multithreading HyperThread Hardware Threads 
I/O controller On chip NA 
Cache 
L1 cache size / core 32 KB (I)+32 KB (D) 32 KB (I)+32 KB (D) 
L2 cache size / core 256 KB 512 KB 
L2 cache network Bi-directional ring Bi-directional ring 
L3 cache size 20 MB (shared) NA 
L3 cache network  Bi-directional ring NA 
Node 
No. of processors/node 2 2 
QPI frequency (GT/s) 8.0 NA 
Number of QPIs 2 NA 
Memory type 4 channels DDR3-1600  GDDR5-3400 
Memory / node (GB) 32  16 GB-8 GB / Phi card 
Sock-sock interconnect 2 QPIs, 8.0 GT/s  NA 
Host-Phi interconnects PCIe PCIe 
PCI Express  40 Integrated PCIe 3.0 16 Integrated PCIe 2.0 
PCIe Speed  8 GT/s (Gen3) 5 GT/s (Gen2) 
System 
Number of nodes  128 
Total cores 2048  15360  
Peak perf. (Tflop/s)  42.6 258 
% Flops 14 86  
Interconnect type  4x FDR InfiniBand 
Peak network perf. 56 GB/s 
Network topology Hypercube 
Type of file system Lustre 
Software 
Compiler Intel 13.1 
MPI library Intel MPI 4.1 
Math library Intel MKL 10.1 
Operating system SLES11SP2 MPSS Gold 

 

3. BENCHMARKS AND APPLICATIONS 
In this section we present a brief description of the benchmarks 
and applications used in this paper 

3.1 STREAM Benchmark 
Performance of many applications depends on the memory 
bandwidth so it is important to measure it. STREAM is a simple, 
synthetic benchmark program that measures sustainable memory 
bandwidth for simple vector kernels such copy, add, BLAS1, etc. 
We used STREAM version 5.1 [18]. 
3.2 Memory Subsystem Latency and 
Bandwidth 
Deep understanding of the performance of the hierarchical 
memory system of the Sandy Bridge host and of the Phi 
coprocessors is a crucial to obtain good application performance. 



We measured the latency and bandwidth for all caches and main 
memory for both the host and the Phi [19-20]. 

3.3 MPI Functions Benchmarks 
The performance of real-world applications that use MPI as the 
programming model depends significantly on the MPI library and 
the performance of various point-to-point and collective message 
exchange operations. The MPI standard defines several collective 
operations, which can be broadly classified into three major 
categories based on the message exchange pattern: OnetoAll, 
AlltoOne, and AlltoAll. We have measured and evaluated the 
performance of MPI_Bcast, MPI_Send, MPI_Recv, 
MPI_AllGather, MPI_AlltoAll and MPI_Allreduce functions on 
both host and coprocessor [21].  

3.4 OpenMP Microbenchmarks 
The OpenMP microbenchmarks are a set of tests to measure the 
overheads of various OpenMP directives and constructs in dealing 
with loop scheduling, synchronization, and data privatization. 
These benchmarks measure the overhead of OpenMP directives 
by subtracting the time for executing the code sequentially from 
the time taken by the same code executed in parallel enclosed in a 
given directive [22-24].  

3.5 Sequential I/O Benchmark 
I/O is critical for overall performance of the application. Real 
world applications have large amounts of data (100’s of GB to 
100’s of TB) to read and write. I/O is also important as most of 
the applications perform checkpointing, which requires fast 
writes. Sequential Read Write is a single process I/O benchmark 
that writes and reads a file using various block sizes [25].  

3.6 NAS Parallel Benchmarks (NPB) 
The NPB suite contains eight benchmarks comprising five kernels 
(CG, FT, EP, MG, and IS) and three compact applications (BT, 
LU, and SP) [21]. We used the MPI and OpenMP versions (NPB 
3.3), Class C problem in our study. BT, LU, and SP are typical of 
full, production-quality science and engineering applications [26].  

3.7 Science and Engineering Applications 
For this study, we used two production quality full applications 
representative of NASA’s and aerospace companies workload. 

3.7.1 OVERFLOW-2 
OVERFLOW-2 is a general-purpose Navier-Stokes solver for 
CFD problems [27-28]. The code uses finite differences in space 
with implicit time stepping. It uses overset-structured grids to 
accommodate arbitrarily complex moving geometries. The dataset 
used is a wing-body-nacelle-pylon geometry (DLRF6-Large) with 
23 zones and 35.9 million grid points. The input dataset is 1.6 GB 
in size, and the solution file is 2 GB. We also used a smaller data 
set (DLRF6-Medium) with 10.8 million grid points, as the 
DLRF6-Large case is too large to run on a single Phi coprocessor. 

3.7.2 Cart3D 
Cart3D is a high fidelity, inviscid CFD application that solves the 
Euler equations of fluid dynamics [28-30]. It includes a solver 
called Flowcart, which uses a second-order, cell-centered, finite 
volume upwind spatial discretization scheme, in conjunction with 
a multi-grid accelerated Runge-Kutta method for steady-state 
cases. In this study, we used the OneraM6 wing with 6 million 
grid points.  

4. PROGRAMMING MODES  
On Maia the following four programming modes are available to 
run the applications. In this paper we have evaluated all four. 

4.1 Offload 
In this mode, an application is launched on the host, and then 
parallel compute-intensive subroutines/functions are “offloaded” 
to the Phi. This is achieved by using “offload” directives, which 
take care of code execution and data transfer seamlessly. The 
program specifies what data or subroutine gets offloaded to Phi. 
The offload directives are followed by one or more OpenMP 
parallel region to distribute work over Phi threads. Efficiency of 
this mode depends on how much work can be done on the Phi to 
offset the cost of the data transfer.  

4.2 Native Host 
In this mode, the entire application is run exclusively on the host 
Sandy Bridge processors; Phi coprocessors are not used.  

4.3 Native Phi 
In this mode, the entire application runs only on the Phi 
coprocessors. Applications with significant serial regions will 
suffer dramatically because of the relatively slow clock rate of a 
Phi core. OpenMP parallel regions will run on Phi cores. MPI 
codes can be run in a similar way. In many cases, a code that runs 
fine on the host can be compiled and built without any changes. 
However, to get even a reasonable performance on the Phi, an 
application has to be highly parallel and highly vectorized with 
unit stride. If an application has non-unit memory strides 
involving gather/scatter its performance degrades dramatically.  

4.4 Symmetric 
In this mode, an application is run using both the host processors 
and the Phi coprocessors; it needs to be compiled for host and Phi 
separately. The challenge is to optimally load balance the work 
between the host and coprocessors. Hybrid programming (MPI + 
OpenMP) is more appropriate for this mode. Pure MPI 
applications can be run but the performance of communication 
intensive applications would be degraded due to low network 
communication bandwidth via PCIe to the host or to another Phi. 

5. SOFTWARE UPDATE 
As early adopters of the new Phi coprocessor, we were faced with 
an evolving software environment during the course of this 
evaluation. Initially, we utilized Intel’s Manycore Platform 
Software Stack “MPSS Gold” version and Intel MPI library 
version 4.1.0.030, henceforth called “pre-update” software. By the 
end of the study, the software environment had been upgraded to 
the “MPSS Gold update 3” and MPI library version 4.1.1.036, 
henceforth called “post-update” software.  

The new MPI library in the post-update software switches 
between different Direct Access Programming Library (DAPL) 
providers based on message size. For smaller messages, Intel 
recommends using a Coprocessor Communications Links (CCL) 
Direct DAPL provider, such as ofa-v2-mlx4_0-1, because it has 
the lowest latency data path and is available across all network 
segments. For larger messages, Intel recommends using the 
Symmetric Communication Interface (SCIF) DAPL provider, ofa-
v2-scif0, due to its higher bandwidth data path over the PCIe bus. 
The pre-update software uses the CCL Direct DAPL provider for 
all message sizes. In order to use the automatic switching 
capability in the post-update software, we set two environment 
variables to specify which DAPL providers are used for various 
message sizes. Specifically, we used: 

I_MPI_DAPL_DIRECT_COPY_THRESHOLD=8192,262144 

I_MPI_DAPL_PROVIDER_LIST=ofa-v2-mlx4_0-1,ofa-v2-scif0 

 



This results in three states: 
• Messages shorter than or equal to 8 KB use the “eager 

protocol” through the CCL direct DAPL provider. 
• Messages larger than 8 KB, but shorter than or equal to 256 

KB, use the “rendezvous direct-copy protocol” through the 
CCL direct DAPL provider. 

• Messages larger than 256 KB use the rendezvous direct-copy 
protocol through the DAPL over the SCIF provider. 

It should be noted that post-upgrade software does not affect the 
MPI performance of the native Phi mode or native host mode, 
which account for most of the benchmarking results in this paper. 
Only MPI latency over PCIe, MPI bandwidth over PCIe, and the 
OVERFLOW performance in a symmetric mode would be 
affected by the settings for DAPL over PCIe. When those results 
are presented, we describe the performance impact of the update.  

6. RESULTS 
In this section we present our results for low-level benchmarks, 
NPBs, and two full applications. 

6.1 STREAM Triad Memory Benchmark 
Figure 4 shows the total STREAM triad memory bandwidth for 
both the host and Phi0. We found a maximum aggregate memory 
bandwidth of 180 GB/s for the Phi using 59 threads (1 thread per 
core) and 118 threads (2 threads per core). Beyond 118 threads it 
drops to 140 GB/s. The plausible reason for the drop is that there 
are more independent memory access streams than there are 
simultaneously active pages. GDDR5 supports 16 independent 
banks per device and with eight devices it amounts to 128 open 
banks, which cause the bandwidth to drop beyond 128 threads.  

 
Figure 4.  STREAM bandwidth for host and Phi.  

6.2 Memory Load Latency and Bandwidth 
In this section, we present memory load latency and bandwidth of 
all caches and main memory on both host and Phi. The total cache 
per core on a Phi is 544KB (32KB L1 + 512KB L2), which is 
lower than the 2.788 MB (32KB L1 + 256KB L2 + 2.5MB L3) on 
the host by a factor of 5.1. 

6.2.1 Memory Latency 
Figure 5 shows the measured memory latency for both host and 
Phi. For the host there are four distinct regions corresponding to 
L1 (32KB), L2 (256KB), L3 (20 MB) cache and main memory (> 
20 MB) with latencies of 1.5 ns, 4.6 ns, 15 ns, and 81 ns 
respectively. Similarly, for the Phi there are three such regions: L1 
(32KB), L2 (512KB) and main memory (> 512 KB) with latencies 
of 2.9 ns, 22.9 ns, and 295 ns respectively. 

 
Figure 5.  Memory load latency for host and Phi. 

6.2.2 Memory Bandwidth 
Figure 6 shows the read and write memory load bandwidth per 
core for the host and Phi. Here also there are four regions (L1, L2, 
L3, and main memory) on the host and three regions (L1, L2, and 
main memory) on the Phi. For the four regions on the host, write 
bandwidths are 10.4, 9.5, 8.6, and 7.2 GB/s; read bandwidths are 
12.6, 12.3, 11.6, and 7.5 GB/s, respectively. For the three regions 
on the Phi, write bandwidths are 1538, 962, and 263 MB/s; read 
bandwidths are 1680, 971, and 504 MB/s, respectively. 

 
Figure 6.  Read and write memory load bandwidth per core for 

host and Phi. 

6.3 Network Latency and Bandwidth  
In this subsection we present the interconnect MPI latency and 
MPI bandwidth between different components on a single node 
for both pre-update and post-update software. Figures 7 and 8 plot 
the interconnect latency and bandwidth respectively for 
connections from: host to Phi0, host to Phi1, and Phi0 to Phi1.  

6.3.1 MPI Latency 
Latency with pre-update software was 3.3 µs, 4.6 µs, and 6.3 µs 
for host to Phi0, host to Phi1, and host to Phi0 to Phi1 
respectively. The corresponding numbers with post-update 
software are 3.3 µs, 4.1 µs, and 6.6 µs. It should be noted that 
latency with both pre-update and post-update software is almost 
same. However, latencies in the cases involving Phi1 are much 
higher than the one where only Phi0 is involved.  



 
Figure 7.  MPI latency between host and Phi. 

6.3.2 MPI Bandwidth 
MPI bandwidth for a 4-MB message size with the pre-update 
software was 1.6 GB/s, 455 MB/s, and 444 MB/s for host to Phi0, 
host to Phi1, and Phi0 to Phi1 respectively. These bandwidth 
values increased significantly with the post-update software to 
6 GB/s, 6 GB/s, and 899 MB/s. The post-update bandwidth curves 
show three distinct regions corresponding to the three states 
discussed in Section 5 with a change in slope for messages 
between 8 KB and 256 KB. It should be noted that beyond a 
message size of 256 KB, the post-update software uses SCIF, 
which provides significantly higher bandwidth compared to the 
pre-update software, which uses the CCL direct DAPL provider.  

 
Figure 8.  MPI bandwidth between host and Phi. 

With pre-update software there is a performance asymmetry, i.e., 
the bandwidth of host to Phi0 (1.6 GB/s) is significantly higher 
than that for host to Phi1 (455 MB/s). The post-update software 
not only removed this performance asymmetry but also 
significantly increased the both bandwidth values to 6 GB/s. The 
post-update software also doubled the Phi0 to Phi1 bandwidth 
from 444 MB/s to 899 MB/s.  

The improvement due to the post-update software is more visible 
in Figure 9, which plots the performance gain (ratio of post-
update bandwidth to pre-update bandwidth) for host to Phi0, host 
to Phi1, and Phi0 to Phi1. For small to medium message sizes, the 
performance advantage of the post-update software is higher by a 
factor of 1 to 1.5 times and 1 to 1.3 for host to Phi0 and host to 
Phi1 respectively. For messages 256 KB or larger, where SCIF is 
used in the post-update software, the bandwidth is higher by a 
factor of 2 to 3.8 and 7 to 13 for host to Phi0 and host to Phi1 
respectively. For Phi0 to Phi1 the bandwidth with post-update 

software decreased up to a message size of 8KB. However, for a 
message size of 256 KB or more, using SCIF improved the 
bandwidth by a factor of 1.8 to 2.  

In summary, we can see that SCIF provides a significant increase 
in bandwidth for messages 256 KB or longer.  

 
Figure 9.  Performance gain in MPI bandwidth using post-

update software. 

6.4 MPI Functions 
In this section we present the performance of selected MPI 
functions commonly used in NASA applications on the host and 
Phi coprocessors. In both cases we have used the same Intel 
compiler and Intel MPI library. Comparing the performance of 
MPI functions on both the intra-host and intra-Phi will give us 
insight into appropriateness of using the same library on two 
entirely different architectures.  

6.4.1 MPI_Send/Recv benchmark 
Figure 10 plots the point-to-point communication bandwidth 
achieved using an MPI_Send/Recv benchmark (each thread sends 
a message to its right neighbor and receives one from its left 
neighbor) for message sizes ranging from one byte to 4 MB using 
1, 2, 3 and 4 threads per core on the Phi along with the 
corresponding results on the host for 16 threads. Performance on 
the host (16 threads) is higher than even one thread per core (59 
threads) of the Phi by a factor of 1.3 to 3.5. For 4 threads per core 
(236 threads) performance of host is higher by a factor 24 to 54. 
For communication dominant code, it is beneficial to use only one 
thread per core on the Phi.  

 
Figure 10.  Performance of MPI_Send/Recv on host and Phi. 

6.4.2 MPI_Bcast 
Figure 11 shows the performance of MPI_Bcast on both the host 
and Phi0. This MPI function is used in the MPI version of Cart3D 



where a message size of 56 MB is broadcast by the master process 
to all other processes. The performance of MPI_Bcast on the host 
is higher than on Phi0 with 1 thread per core (59 threads) by 
factor of 1.1 to 3.8. Per core performance on the host is higher by 
a factor of 20 to 35 than on Phi0 with 4 threads per core (236 
threads). It is clear that using more than one thread per core 
decreases the performance drastically. 

 
Figure 11.  Performance of MPI_Broadcast on host and Phi. 

6.4.3 MPI_Allreduce 
In Figure 12 we present the performance of MPI_Allreduce for 
both host and Phi0. This is a key MPI function in NASA codes 
such as USM3D, MITgcm, and FUN3D, etc. Performance on the 
host is higher than on Phi0 (1 thread per core) by a factor of 2.2 to 
13.4. The host performance is higher by a factor of 28 to 104 than 
on Phi0 with 4 threads per core.  

 
Figure 12.  Performance of MPI_Allreduce on host and Phi. 

6.4.4 MPI_Allgather 
Figure 13 gives the results of MPI_Allgather on the host and Phi0. 
Performance of the host is always much higher than that on the 
Phi0. On Phi0, time increases smoothly as message size increases 
from 1 byte to 1 KB and then at 2KB and 4KB time increases 
abruptly and then again becomes smooth from 8KB onwards. This 
sudden jump in time at 2KB and 4KB message size is due to a 
change in algorithm used in MPI_Allgather. Performance on the 
host is higher than that on the Phi by a factor of 2.6 to 17.1 for one 
thread per core (59 threads) and by a factor 68 to 1146 for 4 
threads per core (236 threads).  

 
Figure 13.  Performance of MPI_AllGather on host and Phi. 

6.4.5 MPI_AlltoAll 
In Figure 14, we present the results of MPI_AlltoAll for both the 
host and Phi0. This benchmark did not run successfully for all the 
message sizes from 1 byte to 4 MB. For 4 threads per core (236 
threads) it could be run only up to a maximum message size of 4 
KB. The failures were due to a lack of memory (as we also see in 
Figure 20 where we could not run the MPI version of NPB FT for 
the same reason). For one thread per core the performance of the 
host is higher than on Phi0 by a factor of 8 to 20, which is much 
higher than other forms of communications. For 4 threads per core 
on Phi0 (236 threads), host performance is higher by a factor of 
1003 to 2603. 

 
Figure 14.  Performance of MPI_AlltoAll on host and Phi. 

6.5 OpenMP Microbenchmarks 
In this subsection we present results for synchronization and loop 
scheduling OpenMP benchmarks. 

6.5.1 Synchronization 
The synchronization OpenMP benchmark measures the overhead 
incurred by explicit barrier or implicit barrier at parallel and work 
sharing constructs, and by mutual exclusion constructs. Work-
sharing constructs used in this test include DO/FOR, PARALLEL 
DO/FOR, and SINGLE. The mutual exclusion constructs include 
CRITICAL, LOCK/UNLOCK, ORDERED, and ATOMIC.  

Figure 15 shows the synchronization overheads for several 
OpenMP directives on the host (16 threads on 16 cores) and Phi0 
(59 cores or 236 threads, 4 threads per core). Overhead in terms of 
the sequential time Ts, and the parallel time Tp on p threads is Tp - 
Ts/p. We notice that almost all the constructs have almost an order 
of magnitude higher overhead on the Phi than on the host. The 



most expensive operation is Reduction, followed by PARALLEL 
FOR and PARALLEL, whereas ATOMIC is the least expensive. 

 
Figure 15.  OpenMP synchronization overhead on host and Phi. 

6.5.2 Loop Scheduling 
Loop scheduling affects how the loop iterations are mapped onto 
threads. The scheduling benchmark measures the overheads for 
three scheduling policies: STATIC, DYNAMIC, and GUIDED. 

Figure 16 presents the scheduling overheads on the host and the 
Phi. We find overhead on Phi is an order of magnitude higher than 
that on the host for all the three scheduling policies. As expected 
the STATIC overhead is the lowest, the DYNAMIC overhead is 
highest, and the GUIDED overhead is in between the two. 

 
Figure 16.  OpenMP scheduling overheads on host and Phi. 

6.6 I/O benchmarks 
Figure 17 presents the sequential read and write bandwidth for the 
host, Phi0, and Phi1. I/O benchmarks were run on a Network File 
System (NFS) mounted on the host. This NFS is exported to Phi0 
and Phi1. Write bandwidth on the host and Phi0 is about 210 
MB/s and 80 MB/s respectively. Read bandwidth is 295 MB/s and 
75 MB/s for the host and Phi0. Write bandwidth on host is 2.6 
times higher and read bandwidth 3.9 times higher than on Phi0. 
The poor performance of I/O in native Phi mode is due to the fact 
that read/write on Phi is done via the TCP/IP stack in MPSS over 
PCIe fabric resulting in a virtual network. Intel is working on a 
new TCP/IP stack that will address the issue in the future release 
of MPSS. Intel states that if an application has significant I/O, use 
of native Phi mode is not recommended [32]. As a workaround, 
this performance problem can be overcome by creating a new 
MPI process on the host and then sending the data from host to 

Phi or Phi to host by using MPI_Send/MPI_Recv via SCIF over 
the PCIe, which gets a bandwidth of 6 GB for message sizes of 
4MB or more, and then perform read/write to the disk from the 
host [33]. 

 
Figure 17.  Read and write bandwidth on host, Phi0, and Phi1. 

6.7 Offload Bandwidth over PCIe 
Performance in the offload mode to a large extent depends on the 
data transfer bandwidth from host to Phi and vice versa over the 
PCIe bus. Therefore, it is useful to measure this PCIe bandwidth. 
A data packet sent via PCIe in offload mode has framing (start 
and end), a sequence number, a header, data, a digest, and a link 
cyclical redundancy check. To transmit 64 or 128 bytes of data, it 
has to be packed in 20 bytes of wrapping, yielding a maximum 
efficiency of 76% and 86% respectively, or 6.1 GB/s and 6.9 
GB/s. We wrote a benchmark to measure this offload PCIe 
bandwidth between host and Phi for varying data sizes. Figure 18 
shows the bandwidth of host to Phi. For large data transfers it is 
about 6.4 GB/s. Note that bandwidth from host to Phi0 is about 
3% higher than for host to Phi1 for large data sizes. In addition, 
there is fall in bandwidth at a data size of 64 KB, which is 
currently not understood and needs further investigation. 

 
Figure 18.  Offload bandwidth between host and Phi. 

6.8 NAS Parallel Benchmarks (NPB)  
In this section we present results for both OpenMP and MPI 
versions of the NPBs.  
6.8.1 NPB OpenMP Version 
Figure 19 shows the performance of the OpenMP version of the 
NPBs on the host and Phi0. Performance on the host is always 
better than the best possible performance on Phi0. Performance on 
Phi0 depends strongly on the number of threads on each core. In 



native mode, performance on Phi0 is minimal for 1 thread per 
core and maximal for the 3 threads per core for most of the 
benchmarks. Among the six benchmarks, BT has the highest 
performance and CG the lowest on the Phi. The reason for this is 
that BT is vectorized, compute intensive, and highly parallel so it 
can use the 512-bit wide vector-unit and the hardware 
multithreading. CG finds the smallest eigenvalue of a symmetric 
positive definite matrix and uses indirect addressing. As such, it 
cannot reuse the cache efficiently. Our tests indicated that the 
compiler vectorized the most time consuming loop (sparse BLAS) 
using the gather-scatter vector instructions. However, 
performance of this version was only 10% better than the version 
without vectorization. This shows that the gather-scatter 
instruction is not efficient on Phi. Except for MG, most of the 
benchmarks have worse performance on the Phi than on the host. 

 
Figure 19.  Performance of NPB OpenMP on host and Phi. 

6.8.2 NPB MPI Version 
Figure 20 shows the performance of the MPI version of the NPBs. 
The minimum and maximum numbers of threads available on a 
Phi are 59 and 236 respectively so results for CG, MG, FT, and 
LU are shown only for 64 and 128 MPI processes as these 
benchmarks run only using power of two processes. For BT and 
SP, the results are shown only for 64, 121, 169 and 225, as these 
benchmarks require square process grids. The FT benchmark 
could not be run on Phi because the Phi memory of 8GB is not 
enough, as it needs minimum of 10 GB to run with 64 or more 
processes. This brings some challenges to run MPI codes on the 
Phi, especially for those that have constraints on the number of 
MPI ranks. The other finding is that unlike in the OpenMP 
version, 3 threads per core do not always give the best 
performance, e.g., BT performance is best for 4 threads per core. 
It shows that number of threads per core needs some tuning to 
determine its optimal value for a given application. 

 
Figure 20.  Performance of NPB MPI on host and Phi. 

6.9 Science and Engineering Applications 
In this subsection we focus on the comparative performance of 
two full production quality applications, OVERFLOW and 
Cart3D, on the host and the Phi coprocessor. We used a hybrid 
(MPI + OpenMP) version of OVERFLOW, and for Cart3D we 
used the pure OpenMP version. OVERFLOW was run in three 
modes: native host, native Phi and symmetric modes. Cart3D 
results are presented only for native host and native Phi modes, as 
a pure OpenMP code cannot run in symmetric mode. We also 
present results for MG of the NPB suite in offload mode.  

6.9.1 Native Mode  
In this subsection we present the results of Cart3D and 
OVERFLOW in native host and native Phi modes. 

6.9.1.1 Cart3D 
Figure 21 shows the performance of the OpenMP version of 
Cart3D in native host and native Phi modes. Native host results 
are shown for 16 OpenMP threads (one thread per core) whereas 
native Phi results are for 59, 118, 177, and 236 threads 
corresponding to 1, 2, 3 and 4 threads per core. Host performance 
is two times better than the best result on Phi. Performance on Phi 
is the best for 4 threads per core. As noted earlier, the number of 
threads per core is a tunable parameter and 4 is the optimal for 
Cart3D, unlike the NPBs where 3 is generally the best value.  

 
Figure 21.  Performance of Cart3D on host and Phi. 

6.9.1.2 Overflow 
Figure 22 shows the wallclock time per step of the hybrid (MPI + 
OpenMP) OVERFLOW in native host and native Phi modes for 
the DLRF6-Medium data set. The notation (I x J) is used here, 
where I is the number of MPI processes and J is the number of 
OpenMP threads per MPI process. For example, 8 x 2 means 8 
MPI processes and 2 OpenMP threads per MPI process. We used 
one host (two Sandy Bridge processors) and one Phi (Phi0).  

The best performance on the host is for 16 x 1 whereas the worst 
performance is for 1 x 16. The best performance on the Phi is for 
8 x 28 (224 threads—close to 4 threads per core) and the worst 
performance is for 4 x 14 (56 threads—close to 1 thread per core). 
The best performance on the Phi is worse than the best 
performance on the host by a factor of 1.8. On the host, 
performance decreases as the number of OpenMP threads 
increases for a fixed number of total threads. On the other hand, 
on the Phi, performance increases as the number of OpenMP 
threads increases. The main reason for the lower performance of 
OVERFLOW on the Phi is that the performance of OVERFLOW 
depends on the bandwidth of the memory subsystem, which is 
much lower on the Phi than on the host.  



 
Figure 22.  Performance of Overflow on host and Phi . 

6.9.1.3 Symmetric Mode 
Figure 23 shows the wallclock time per step of OVERFLOW on 
the DLRF6-Large case in a symmetric mode on host+Phi0+Phi1 
for pre-update and post-update software. Also shown in the figure 
is the percentage performance gain by the post-update software. In 
the symmetric mode there is MPI communication over PCIe 
amongst the host, Phi0, and Phi1, so the upgrade due to the post-
update software does impact the performance of the application. 
The performance gain using post-update software is from 2% to 
28%.  

The best performance is obtained when one OpenMP thread is 
used for each MPI rank on the host and 28 OpenMP threads are 
used for each MPI rank on Phi0 and Phi1. The 8x28 case has 224 
threads, which almost fills the Phi. Performance in this symmetric 
mode, which uses host, Phi0 and Phi1 with 8 MPI ranks on each 
Phi and 28 OpenMP threads for each MPI rank, is better than that 
on host only (not shown in the chart) by a factor of 1.9. 

When compared to using two hosts (host1+host2), the best 
host+Phi0+Phi1 result is still worse. Detailed examination of the 
results revealed that the host+Phi0+Phi1 combination was about 
15% faster than the two hosts on the numerically intensive parts 
of the code, but communication time and overhead due to load 
imbalance (which might include some communication time) were 
large enough on the host+Phi0+Phi1 to outweigh the speedup on 
the numerically intensive parts. 

 
Figure 23.  Performance of Overflow in symmetric mode. 

6.9.1.4 Offload Mode  
In this section we present the results for three different versions of 
the MG benchmark in offload mode and compare with native host 
and native Phi modes. Also presented is the cost of offload from 
host to Phi. All offload tests are done on Phi0. We used the Intel 

tool OFFLOAD_REPORT for producing the offload profile. The 
offload cost has three components:  
• Setup time + data gather/scatter time on host 
• PCIe transfer time 
• Setup time + data gather/scatter time on Phi 

6.9.1.5 OpenMP Loop Collapse 
We ported the NPB OpenMP version of MG for offload testing on 
Maia. The MG benchmark approximates the solution to a three-
dimensional discrete Poisson equation using the V-cycle multigrid 
method. The basic idea behind MG method is to reduce long 
wavelength error components by updating blocks of grid points. 
We present results from two versions, the original benchmark 
from the NPB version 3.3 suite and an optimized version in which 
the OpenMP nested loops were collapsed. This loop-collapsing 
optimization increased the performance by 25% to 28% on Phi0 
as shown in the Figure 24. However, this optimization degraded 
the performance on the host for 16 threads by 1%, showing that a 
transformation good for Phi is not necessarily best for the host. 
Note that performance with 59, 118, 177, and 236 threads is much 
better than with 60, 120, 180, and 240 threads, respectively. The 
reason for this is that 59, 118, 177, and 236 use 59 cores with 1, 2, 
3, and 4 threads per core respectively. Using the 60th core, which 
is usually used for OS services, incurs significant overhead, and 
should be avoided.  

 
Figure 24.  Performance gain of OpenMP loop collapse on Phi. 

6.9.1.6 Native and Offload Modes 
Figure 25 shows the performance of MG in native host, native 
Phi, and offload modes. For offload we used three different 
versions:  

• offload one OpenMP loop,  
• offload one subroutine in the main program and 
• offload the whole computation.  

The performance of MG in native host mode (23.5 Gflop/s for 16 
threads) is lower by 27% than the best performance on the Phi 
(29.9 Gflop/s for 177 threads – 3 threads per core) in native Phi 
mode. Note that on the host, HT performance (32 threads – 22.2 
Gflop/s) is 6% lower than single thread performance (16 threads – 
23.5 Gflop/s). We see that the performance of all the offload 
versions is much lower than both native host and native Phi 
modes. The main reason for this is the high cost of data transfer.  

The amount of data transferred between host and Phi, and the 
number of offload invocations are different for the three offload 
versions. We offloaded the most time consuming “do loop” in the 
subroutine “resid”. Here the amount of data transferred is the least 
in each offload occurrence. But the total amount of data 
transferred and the number of offload invocations are the most 
among all three versions. So the performance of this version is the 
worst. The performance is improved when offloading the whole 



subroutine “resid” with fewer offload occurrences and data. The 
most efficient technique is to offload the whole computation to the 
Phi. In this version the data transferred is the least because input 
data is generated on host and transferred to Phi only once. So the 
main criteria to evaluate whether an application is suitable for 
offload mode is the cost of data transfer and offload overhead. It 
is clear from our study that MG is not a good candidate for 
offload mode.  

 
Figure 25.  MG in 3 modes: native host, native Phi, offload. 

6.9.1.7 Overhead in Offload Mode 
Figure 26 shows the overhead for the three offload versions of 
MG for 3 threads per core. As can be seen from this figure, the 
performance of offloading one main OpenMP loop is the worst 
and the best performance is that of offloading the whole 
computation as it has the least amount of data transferred between 
host and Phi.  

 
Figure 26.  Overhead in three offload versions for MG. 

Figure 27 shows the number of offload invocations and the 
amount of data transferred in the three versions of the offload 
code. This cost is maximal for offloading one OpenMP loop and 
minimal for offloading the whole computation. 

 
Figure 27.  Cost of three offload versions of MG. 

7. CONCLUSIONS 
In this paper we studied the single node performance of an SGI 
Rackable computer that has Intel Xeon Phi coprocessors. We ran 
a suite of codes ranging from microbenchmarks to full CFD 
applications of interest to NASA—Cart3D, which is pure 
OpenMP and OVERFLOW, which is an MPI+OpenMP hybrid 
code. We tested four programming modes: processor native, 
coprocessor native, symmetric, and offload. After we finished our 
initial experiments, an updated version of software became 
available and we repeated the runs to determine its impact. 
When comparing native performance of the two applications, we 
found that a single Phi card had about half the performance of the 
two host Xeon processors. When run in symmetric mode with two 
Phi coprocessors, OVERFLOW achieved a 1.9x boost compared 
to its best performance in native host mode.  
The advantage of native mode on Phi is that the code requires no 
changes. On the negative side, there are constraints on memory 
footprint, and I/O performance is poor due to NFS mounting 
being done via TCP/IP on PCIe. In contrast, symmetric execution 
requires careful balancing of the workload across the host 
processors and the Phi coprocessors.  
Our less-than-optimal application performance results can be 
explained as follows. Peak performance on Phi requires a highly 
threaded code that is also highly vectorized with unit stride. This 
will keep the 512-bit wide vector units busy. Cart3D is not heavily 
vectorized. Furthermore as our microbenchmarks results show, 
the Phi has higher memory latency than Sandy Bridge, which 
results in additional stall cycles, and it has lower memory 
bandwidth, which starves the floating-point units. This limits the 
performance of memory bandwidth-intensive applications such as 
OVERFLOW. 
As our experiments show, there is a significant overhead to using 
the offload mode and thus one should carefully choose the 
granularity of the offloads to offset the overhead of the data 
transfer with the efficiency gained by execution on the 
coprocessor.  
We found that the overhead of system software such as MPI and 
OpenMP is very high on Phi and needs to be optimized. In 
addition, better performance can often be achieved by leaving one 
core to operating system software when running a user application 
on Phi. In addition, the implementation of gather and scatter on 
the Phi is not efficient as is shown by the non-unit stride 
vectorization of CG and OVERFLOW.  
The post-update software significantly enhanced the MPI 
bandwidth over PCIe especially for large message sizes and 
performance of OVERFLOW. Software on the Phi is maturing 
gradually and the next generation of hardware is expected to be 
promising for achieving high performance on highly vectorized 
and highly parallel applications.  
The less than hoped for application performance described in the 
paper is a combination of hardware (low memory bandwidth, light 
core, small memory, network latency and bandwidth, etc.), 
software (MPI library, operating system, and compiler), and 
applications. On the positive side, we have seen that the software 
is evolving and improving; we also note that some applications 
can be reformulated. We hope that the hardware issues will be 
resolved in the next version of the Phi to provide a better 
performing system. 
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